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Abstract Let R be a (commutative) ring with nonzero identity and Z.R/ be the
set of all zero divisors of R. The total graph of R is the simple undirected graph
T .� .R// with vertices all elements of R, and two distinct vertices x and y are
adjacent if and only if x Cy 2 Z.R/. This type of graphs has been studied by many
authors. In this paper, we state many of the main results on the total graph of a ring
and its related graphs.
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1 Introduction

Over the past several years, there has been considerable attention in the literature
to associating graphs with commutative rings (and other algebraic structures) and
studying the interplay between ring-theoretic and graph-theoretic properties; see the
recent survey articles [13, 32]. For example, as in [10], the zero-divisor graph of R

is the (simple) graph � .R/ with vertices Z.R/ n f0g, and distinct vertices x and y

are adjacent if and only if xy D 0; see the articles [6,11–12, 15–17, 19, 36]. The
total graph (as in [7]) has been investigated in [2–5, 25, 32, 33, 35, 37]; and several
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variants of the total graph have been studied in [1, 8, 9, 14, 16, 18, 21–24, 26, 27, 31].
The goal of this survey article is to enclose many of the main results on the total
graph of a commutative ring and its related graphs.

Let G be a (simple) graph. We say that G is connected if there is a path between
any two distinct vertices of G. At the other extreme, we say that G is totally
disconnected if no two vertices of G are adjacent. For vertices x and y of G,
we define d.x; y/ to be the length of a shortest path from x to y (d.x; x/ D 0

and d.x; y/ D 1 if there is no such path). The diameter of G is diam.G/ D
supfd.x; y/ j x and y are vertices of G g. The girth of G, denoted by gr.G/, is
the length of a shortest cycle in G (gr.G/ D 1 if G contains no cycles). The
eccentricity of a vertex x in G is the distance between x and the vertex which is at
the greatest distance from x; e.x/ D maxfd.x; y/jy is a vertex in GĄg. The radius
of the graph G, r.G/, is defined by r.G/ D minfe.x/jx is a vertex in Gg, and the
center of the graph is the set of all of its vertices whose eccentricity is minimal, i.e., it
is equal to the radius. So, the radius of the graph is equal to the smallest eccentricity
and diameter to the largest eccentricity of a vertex in this graph. It is well known
that for connected graphs of diameter d and radius r , one has r � d � 2r . Recall
that a clique in a graph is a set of pairwise adjacent vertices. The clique number of a
graph G, denoted by !.G/, is the order of a largest clique in G. Also, �.G/ denotes
the chromatic number of G and is the minimum number of colors which is needed
for a proper coloring of G, i.e., a coloring of the vertices of G such that adjacent
vertices have distinct colors. We denote the complete graph on n vertices by Kn and
the complete bipartite graph on m and n vertices by Km;n (we allow m and n to
be infinite cardinals). We will sometimes call a K1;n a star graph. We say that two
(induced) subgraphs G1 and G2 of G are disjoint if G1 and G2 have no common
vertices and no vertex of G1 (resp., G2) is adjacent (in G) to any vertex not in G1

(resp., G2). By abuse of notation, we will sometimes write G1 � G2 when G1 is a
subgraph of G2. A general reference for graph theory is [20].

Throughout this paper, all rings R are with 1 6D 0. Let R be a commutative
ring with nonzero identity. Then Z.R/ denotes its set of zero divisors, Nil.R/

denotes its ideal of nilpotent elements, Reg.R/ denotes its set of nonzero divisors
(i.e., Reg.R/ D R n Z.R/), and U.R/ denotes its group of units. For A � R,
let A� D A n f0g. We say that R is reduced if Nil.R/ D f0g, and dim.R/

will always mean Krull dimension. As usual, Z, Q, Zn; and Fq will denote the
integers, rational numbers, integers modulo n, and the finite field with q elements,
respectively. General references for ring theory are [29, 30].

2 The Total Graph of a Ring

In [7], Anderson and I defined the total graph of R to be the (undirected) graph
T .� .R// with all elements of R as vertices, and two distinct vertices x and y are
adjacent if and only if xCy 2 Z.R/. Let Reg.T ..� .R/// be the (induced) subgraph
of T .� .R// with vertices Reg.R/.
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Theorem 2.1 ([7, Theorem 2.2]). Let R be a commutative ring such that Z.R/ is
an ideal of R, and let jZ.R/j D ˛ and jR=Z.R/j D ˇ.

1. If 2 2 Z.R/, then Reg.T .� .R// is the union of ˇ � 1 disjoint K˛0s.
2. If 2 62 Z.R/, then Reg.T .� .R// is the union of .ˇ � 1/=2 disjoint K˛;˛0s.

Theorem 2.2 ([7, Theorem 2.4]). Let R be a commutative ring such that Z.R/ is
an ideal of R. Then

1. Reg.T .� .R// is complete if and only if either R=Z.R/ Š Z2 or R Š Z3.
2. Reg.T .� .R// is connected if and only if either R=Z.R/ Š Z2 or R=Z.R/ ŠZ3.
3. Reg.T .� .R// is totally disconnected if and only if R is an integral domain with

char.R/ D 2.

Theorem 2.3 ([7, Theorem 2.9]). Let R be a commutative ring such that Z.R/ is
an ideal of R. Then the following statements are equivalent:

1. Reg.T .� .R// is connected.
2. Either x C y 2 Z.R/ or x � y 2 Z.R/ for all x; y 2 Reg.R/.
3. Either x C y 2 Z.R/ or x C 2y 2 Z.R/ for all x; y 2 Reg.R/. In particular,

either 2x 2 Z.R/ or 3x 2 Z.R/ .but not both/ for all x 2 Reg.R/.
4. Either R=Z.R/ Š Z2 or R=Z.R/ Š Z3.

Theorem 2.4 ([7, Theorems 3.3, 3.4]). Let R be a commutative ring such that
Z.R/ is not an ideal of R. Then T .� .R// is connected if and only if 1 D z1C� � �Czn

for some z1; : : : ; zn 2 Z.R/. Furthermore, suppose that T .� .R// is connected and
let n be the least integer 1 D z1 C � � � C zn for some z1; : : : ; zn 2 Z.R/. Then
diam.T .� .R/// D n. In particular, if R is a finite commutative ring and Z.R/ is
not an ideal of R, then diam.T .� .R/// D 2.

In the following example, for each integer n � 2, we construct a commutative
ring Rn such that Z.Rn/ is not an ideal of Rn and T .� .Rn// is connected with
diam.T .� .R/// D n.

Example 2.5. Let n � 2 be an integer, D D ZŒX1; X2; : : : ; Xn�1�, K be the
quotient field of D, P0 D .X1 C X2 C Ą � � � C Xn�1/, Pi D .Xi / for each integer
i with 1 � i � n � 2, and Pn�1 D .Xn�1 C 1/. Then P0; P1; : : : ; Pn�1 are distinct
prime ideals of D. Let F D P0[P1Ą[� � �[Pn�1; then S D D F is a multiplicative
subset of D. Set Rn D D.C/.K=DS/. Then Z.Rn/ D F.C/.K=DS //. Since
.1; 0/ D .�X1 � X2 � � � � � Xn�1; 0/ C .X1; 0/ C .X2; 0/ C .X3; 0/ C Ą � � � C
.Xn�1 C 1; 0/ is the sum of n zero divisors of Rn, by construction we conclude that
n is the least integer m � 2 such that 1 is the sum of m zero divisors of Rn. Hence
T .� .Rn/ is connected with diam.T .� .Rn/// D n by Theorems 2.4 above.

Theorem 2.6 ([7, Theorem 3.1]). If Reg.� .R// is connected, then T .� .R// is
connected.

The converse of Theorem 2.6 is not true. We have the following example.
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Example 2.7. Let R D QŒX�.C/.Q.X/=QŒX�/. Then one can easily show that
Z.R/ D .QŒX� Q�/.C/.Q.X/=QŒX�/ is not an ideal of R and Reg.R/ D U.R/ D
Q�.C/.Q.X/=QŒX�/. Thus T .� .R// is connected with diam.T .� .R// D 2 (by
Theorems 2.4) since .1; 0/ D .X; 0/.C/.X C 1; 0/ with .X; 0/; .X C 1; 0/ 2 Z.R/.
However, Reg.� .R// is not connected since there is no path from .1; 0/ to .2; 0/ in
Reg.� .R//.

Theorem 2.8. 1. [7, Corollary 3.5] If T .� .R// is connected, then diam
.T .� .R// D d.0; 1/.

2. [7, Corollary 3.5] If T .� .R// is connected and diam.T .� .R// D n, then
diam.Reg.� .R/// � n � 2.

3. [4, Corollary 1] If R is a commutative Noetherian ring and T .� .R// is
connected with diameter n, then n � 2 � diam.Reg.� .R/// � n.

Theorem 2.9 ([8, Theorem 4.4]). Let R be a commutative ring.

(1) If R is either an integral domain or isomorphic to Z4 or Z2ŒX�=.X2/, then
gr.T .� .R/// D 1.

(2) If R is isomorphic to Z2 � Z2, then gr.T .� .R/// D 4.
(3) Otherwise, gr.T .� .R/// D 3.

Theorem 2.10 ([35, Theorem 2.1]). Let R be a finite commutative ring with 1 such
that Z.R/ is not an ideal of R. Then r.T .� .R/// D 2.

Theorem 2.11 ([35, Theorem 2.2]). Let R be a commutative ring with 1 such that
Z.R/ is not an ideal of R, and let n be the smallest integer such that 1 D z1C� � �Czn,
for some z1; : : : ; zn 2 ĄZ.R/. Then r.T .� .R/// D n.

Theorem 2.12 ([35, Theorem 3.2]). Let R be a ring such that Z.R/ is not an ideal
of R. Then T .� .RŒx�// is connected if and only if T .� .R// is connected. Further-
more if diam.T .� .R/// D n, then diam.T .� .RŒx�/// D r.T .� .RŒx�// D n.

Theorem 2.13 ([35, Theorem 3.4]). Let R be a reduced ring such that Z.R/

is not an ideal of R. Then T .� .RŒŒx��// is connected if and only if T .� .R//

is connected. Furthermore if diam.T .� .R/// D n, then diam.T .� .RŒŒx��/// D
r.T .� .RŒŒx��// D n.

Let G be a simple undirected graph. Recall that a Hamiltonian path of G is a
path in G that visits each vertex of G exactly once. A Hamilton cycle (circuit) of G

is a Hamilton path that is a cycle. A graph G is called a Hamilton graph if it has a
Hamilton cycle.

Theorem 2.14 ([4, Theorem 3]). Let R be a finite commutative ring such that
Z.R/ is not an ideal. Then the following statements hold:

1. T .� .R// is a Hamiltonian graph.
2. Reg.� .R// is a Hamiltonian graph if and only if R is isomorphic to none of the

rings: ZnC1
2 ;Zn

2 � Z3;Zn
2 � Z4;Zn

2 � Z2ŒX�=.X2/, where n is a natural number.
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Theorem 2.15 ([25, Theorem 5.2]). If R is a commutative ring and diam
.T .� .R/// D 2, then T .� .R// is Hamilton graph.

Theorem 2.16 ([25, Corollary 5.3]). If R is an Artinian ring, then T .� .R// is
Hamilton graph.

Recall that a simple undirected graph is called a planar graph if it can be drawn
on the plane in such way that no edges cross each other. Recall that a commutative
ring R is called a local .quasilocal/ ring if it has exactly one maximal ideal.

Theorem 2.17 ([33, Theorem 1.5]). Let R be a finite commutative ring such that
T .� .R// is planar. Then the following statements hold:

1. If R is a local ring, then R is a field or R is isomorphic to one of the following
rings:
Z4;Z2ŒX�=.X2/;Z2ŒX�=.X3/;Z2ŒX; Y �=.X; Y /2;Z4ŒX�=.2X; X2/

Z4ŒX�=.2X; X2 � 2/;Z8;F4ŒX�.X2/;Z4ŒX�=.X2 C X C 1/, where F4 is a field
with exactly four elements.

2. If R is not a local ring, then R isomorphic to either Z2 � Z2 or Z6.

A simple undirected nonplanar graph G is called toroidal if the vertices of G can
be placed on a torus such that no edges cross.

Theorem 2.18 ([33, Theorem 1.6]). Let R be a finite commutative ring such that
T .� .R// is toroidal. Then the following statements hold:

1. If R is a local ring, then R is isomorphic to either Z9 or Z3=.x2/.
2. If R is not a local ring, then R is isomorphic to one of the following rings: Z2 �

F4;Z3 � Z3;Z2 � Z4;Z2 � Z2ŒX�=.X2/;Z2 � Z2 � Z2, where F4 is a field with
exactly four elements.

Let Sk denote the sphere with k handles, where k is a nonnegative integer, that
is, k is an oriented surface with k handles. The genus of a graph G, denoted G.G/,
is the minimal integer n such that the graph can be embedded in Sn. Intuitively, G

is embedded in a surface if it can be drawn in the surface so that its edges intersect
only at their common vertices. Note that a graph G is a planar iff g.G/ D 0 and G

is toroidal iff g.G/ D 1. Note that if x is a real number, then dxe is the least integer
that is greater than or equal to x.

Theorem 2.19 ([24, Theorem 3.2]). Let R be a finite commutative ring with
identity, I be an ideal contained in Z.R/, jI j D n and jR=I j D m. Then the
following statements are true:

1. If 2 2 I , then g.T .� .R/// � md .n�3/.n�4/

12
e.

2. If 2 62 I , then g.T .� .R/// � d .n�3/.n�4/

12
e C . m�1

2
/d .n�2/2

4
e.

Theorem 2.20 ([24, Corollary 3.4]). Let R be a finite commutative ring with
identity such that Z.R/ is an ideal of R, jZ.R/j D n and jR=Z.R/j D m. Then the
following statements hold:
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1. If 2 2 Z.R/, then g.T .� .R/// D md .n�3/.n�4/

12
e.

2. If 2 62 I , then g.T .� .R/// D d .n�3/.n�4/

12
e C . m�1

2
/d .n�2/2

4
e.

Theorem 2.21 ([24, Theorem 4.3]). Let R be a finite commutative ring. Then
g.T .� .R/// D 2 if and only if R is isomorphic to either Z10 or Z3 � F4, where
F4 is a field with four elements.

Let v be a vertex of a simple undirected graph G. Then the degree of v is denoted
by deg.v/. We say deg.v/ D k if there are exactly k (distinct) vertices in G where
each vertex is connected to v by an edge. Let G be a simple undirected graph. We
say that G is Eulerian if it is connected and its vertex degrees are all even.

Theorem 2.22. 1. [37, Theorem 3.3] Let R be a finite commutative ring. Then
T .� .R// is Eulerian if and only if R is isomorphic to a direct sum of two or
more finite fields of even orders, i.e., R Š Lk

iD1 F2ti for some k � 2.
2. [25, Lemma 5.1] Suppose that Z.R/ is not an ideal of R. Then T .� .R/ is

Eulerian if and only if 2 2 Z.R/ and jZ.R/j is an odd integer.

Let G be a simple undirected graph with V as its set of vertices. A subset S of
V is called a dominating set of G if for every a 2 V n S , there is a b 2 S such that
a � b is an edge of the graph G. The domination number �.G/ is the minimum size
of a dominating set of G.

Theorem 2.23 ([37, Theorem 4.1]). Let R be a finite commutative ring and n D
minfjR=M j j M is a maximal ideal of Rg. Then �.T .� .R/// D n, except when R

is a (finite) field of an odd order, where �.T .� .R/// D n�1
2

C 1.

Let H D fd j d is a dominating set of T .� .R//g. The intersection graph of
dominating sets denoted by IT .R/ is a simple undirected graph with vertex set H

and two distinct vertices a and b in H are adjacent if an only if a \ b D ; (see
[26, 27]).

Theorem 2.24 ([26, Theorem 3.1]). Let R be a commutative Artinian ring with
jRj � 4 and let I be an annihilator ideal of R such that jR=I j is finite. Then

1. IT .R/ is connected and diam.IT .R// � 2.
2. gr.IT .R/// 2 f3; 4g. In particular, gr.IT .R// D 4 if and only if either R Š Z4

or R Š Z2ŒX�=.X2/.

Theorem 2.25 ([26, Theorem 3.2]). Let R be a commutative Artinian ring with
jRj � 4 and let I be an annihilator ideal of R such that jR=I j is finite. Then

1. IT .R/ is a regular graph .i.e., all vertices in IT .R/ have the same degree/.
2. IT .R/ is a complete graph if and only if R is an integral domain.
3. IT .R/ is a bipartite graph if and only if either R Š Z4 or R Š Z2ŒX�=.X2/.
4. IT .R/ is a cycle if and only if either R Š Z4 or R Š Z2ŒX�=.X2/.

Theorem 2.26 ([26, Theorem 5.4]). Let R be a finite commutative ring. Then

1. IT .R/ is planar if and only if R is isomorphic to either Z3 or Z4 or Z5 or
Z2Œx�=.X2/ or Z2 �Z2 or F2n .a field with 2n elements/ for some positive integer
n � 1/.
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2. IT .R// is toroidal if and only if R Š Z6.
3. g.IT .R// D 2 if and only if R Š Z7.

Theorem 2.27 ([26, Theorem 5.5]). If R is a finite commutative ring, then
g.IT .R// � g.T .� .R///.

Theorem 2.28 ([27, Theorem 2.1]). Let R be a commutative Artinian ring with
jRj � 4 and assume that I is the unique annihilator ideal of R such that jR=I j is
minimum. Then IT .R/ is Eulerian if and only if R is not a field.

Theorem 2.29 ([27, Theorem 2.2]). Let R be a commutative Artinian ring with
jRj � 4 and assume that I is an annihilator ideal of R such that jR=I j is minimum.
Then IT .R/ is a Hamilton graph.

We recall that a graph G with number of vertices equals m � 3 is called pancyclic
if G contains cycles of all lengths from 3 to m. Also G is called vertex-pancyclic if
each vertex v of G belongs to every cycle of length l for 3 � l � m.

Theorem 2.30. Let R be a commutative Artinian ring with jRj � 4 and assume
that I is an annihilator ideal of R such that jR=I j is minimum. Then

1. [27, Theorem 2.3] IT .R/ is pancyclic if and only if either R Š Z4 or R Š
Z2ŒX�=.X2/.

2. [27, Corollary 2.1] IT .R/ is vertex-pancyclic if and only if neither R Š Z4 nor
R Š Z2ŒX�=.X2/ .i.e., IT .R/ is not pancyclic/.

We recall that a perfect graph is a graph in which the chromatic number of every
induced subgraph equals the size of the largest clique of that subgraph.

Theorem 2.31. Let R be a finite commutative ring. Then:

1. [27, Theorem 4.1] �.IT .R/ D !.IT .R//.
2. [27, Theorem 4.2] IT .R/ is perfect if and only if either R is an integral domain

or R has a unique annihilator ideal I with jR=I j D 2 or R Š Z2 � Z2.

Let C T .� .R// denotes the complement of the total graph of a commutative ring
R, i.e., C T .� .R// is a simple undirected graph with R as its vertex set, and two
distinct vertices x; y in C T .� .R// are adjacent if x C y 2 Reg.R/.

Recall that a path graph is a particularly simple example of a tree, namely a tree
with two or more vertices that is not branched at all, that is, contains only vertices of
degree 2 and 1. In particular, it has two terminal vertices (vertices that have degree
1), while all others (if any) have degree 2.

Theorem 2.32 ([25, Theorem 2.16]). Let R be a commutative ring. Then the
following statements are true:

1. C T .� .R// is a path if and only if R Š Z2.
2. C T .� .R// is complete if and only if R is an integral domain and char.R/ D 2.
3. C T .� .R/// is a star if and only if either R Š Z2 or RZ3.



46 A. Badawi

4. C T .� .R// is a cycle if and only if either R Š Z4 or R Š Z2ŒX�=.X2/ or
R Š Z6.

5. C T .� .R// is a complete bipartite graph if and only if either R is a local ring
Œwith maximal ideal Z.R/� such that R=Z.R/ Š Z2 or R Š Z3.

Theorem 2.33. Let R be a finite commutative ring. Then

1. [25, Corollary 4.5] gr.C T .� .R// D 3; 4; 6; 1.
2. [25, Lemma 5.1] Suppose Z.R/ is not an ideal of R. Then C T .� .R/ is Eulerian

if and only if 2 2 Z.R/ and jReg.R/j is an even integer.

Let C.R/ represent a simple undirected graph with vertex set R and for distinct
x; y 2 R, the vertices x and y are adjacent if and only if x � y 2 Z.R/. It is natural
for one to ask when is T .� .R// isomorphic to C.R/? We have the following result.

Theorem 2.34 ([37, Theorem 5.2]). Let R be a finite commutative ring. Then the
two graphs T .� .R// and C.R/ are isomorphic if and only if at least one of the
following conditions is true:

1. R Š R1 ˚ � � � ˚ Rk; k � 1, and each Ri is a local ring of an even order.
2. R Š R1 ˚ � � � ˚ Rk; k � 2, and each Ri is a local ring such that minfjRi =Mi j

where Mi is the maximal ideal of Ri g D 2.

Let R be a noncommutative ring. Then one can define T .� .R// and
Reg.� .R// in the same way as for the commutative case. Let R be a ring. Then
Mn.R/; GLn.R/, and Tn.R/ denote the set of n � n matrices over R, the set of
n � n invertible matrices over R, and the set of n � n upper triangular matrices over
R, respectively.

Theorem 2.35 ([35, Theorem 3.7]). Let R be a commutative ring. The total graph
T .� .Mn.R/// is connected and diam.T .� .Mn.R/// D 2.

Theorem 2.36 ([3, Theorem 1]). Let F be a field with char.F / 6D 2 and
n be a positive integer. Then !.Reg.� .Mn.F //// < 1, and moreover

!.Reg.� .Mn.F //// � Pn
kD0

.nŠ/2

kŠŒ.n�k/Š�2
.

Theorem 2.37 ([3, Theorem 2]). For every field F with char.F / 6D 2,
!.Reg.� .M2.F //// D 5.

Theorem 2.38 ([3, Theorem 3]). For every division ring D; char.D/ 6D 2,
diag.˙1; : : : ; ˙1g : : : ; ˙1/ .the set of all diagonal matrices with diagonal entries
in the set f�1; 1g forms a maximal clique for Reg.� .Mn.D////.

Theorem 2.39 ([5, Theorem 1]). If F is a field, char.F / 6D 2 and n is a positive
integer, then �.Reg.� .Tn.F //// D !.Reg.� .Tn.F //// D 2n.

Theorem 2.40 ([2, Theorem 1, Theorem 3]). Let R be a ring .not necessarily
commutative/. Then gr.Reg.� .R///; gr.T .� .R/// 2 f3; 4; 1g.
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Recall that a tree is an undirected graph in which any two vertices are connected
by exactly one simple path. In other words, any connected graph without simple
cycles is a tree. A forest is a disjoint union of trees.

Theorem 2.41 ([2, Theorem 2]). Let R be a left Artinian ring and Reg.� .R// be
a tree. Then R is isomorphic to one of the following rings: Z3;Z4;Z2ŒX�=.X2/;Zr

2;

Z3 �Zr
2;Z4 �Zr

2;Z2ŒX�=.X2/ �Zr
2; T2.Z2/; T2.Z2/ �Zr

2, where T2.Z2/ denotes the
ring of 2 � 2 upper triangular matrices over Z2 and r is a natural number.

Theorem 2.42 ([2, Theorem 5]). Let R be a finite ring .not necessarily
commutative/. Then Reg.� .R// is regular .i.e., all vertices have the same degree/.

Theorem 2.43. Let R be ring .not necessarily commutative/. Then

1. [2, Theorem 7] If R is a left Artinian ring and Reg.� .R// contains a vertex
adjacent to all other vertices, then Reg.� .R// is complete.

2. [2, Theorem 8] If 2 62 Z.R/ and Reg.� .R// is a complete graph, then J.R/ D 0

.where J.R/ is the Jacobson radical of R/.
3. [2, Theorem 9] If R is a left Artinian ring and 2 62 Z.R/, then Reg.� .R// is a

complete graph, if and only if R Š Zr
3, for some natural number r .

4. [2, Corollary 4] If R is a reduced left Noetherian ring and 2 62 Z.R/ such that
Reg.� .R// is a complete graph, then R Š Zr

3, for some natural number r .

3 The Total Graph of a Commutative Ring
Without the Zero Element

In this section, we consider the (induced) subgraph T0.� .R// of T .� .R// obtained
by deleting 0 as a vertex. Specifically, T0.� .R//) has vertices R� D R n f0g), and
two distinct vertices x and y are adjacent if and only if x C y 2 Z.R/.

Let dT .x; y/ (resp., dT0.x; y/) denote the distance from x to y in T .� .R// (resp.,
T0.� .R//).

Theorem 3.1 ([8, Theorem 4.3]). Let R be a commutative ring. Then
diam.T0.� .R/// D diam.T .� .R///.

Theorem 3.2 ([8, Theorem 4.5]). Let R be a commutative ring.

(1) If R is either an integral domain or isomorphic to Z4, Z2ŒX�=.X2/, or Z2 � Z2,
then gr.T0.� .R/// D 1.

(2) If R is isomorphic to Z9 or Z3ŒX�=.X2/, then gr.T0.� .R/// D 4.
(3) Otherwise, gr.T0.� .R/// D 3.

Let x; y 2 R� be distinct. We say that x � a1 � � � � � an � y is a zero-divisor
path from x to y if a1; : : : ; an 2 Z.R/� and ai C aiC1 2 Z.R/ for every 0 � i � n

(let x D a0 and y D anC1). We define dZ.x; y/ to be the length of a shortest
zero-divisor path from x to y (dZ.x; x/ D 0 and dZ.x; y/ D 1 if there is no such
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path) and diamZ.R/ D supf dZ.x; y/ j x; y 2 R� g. In particular, if x; y 2 R�
are distinct and x C y 2 Z.R/, then x � y is a zero-divisor path from x to y with
d.x; y/ D 1.

Let Min.R/ denote the set of all minimal prime ideals of a commutative ring R.
Recall that U.R/ denotes the set of all units of a commutative ring R.

Theorem 3.3 ([8, Theorem 5.1]). Let R be a commutative ring that is not an
integral domain. Then there is a zero-divisor path from x to y for every x; y 2 R�
if and only if one of the following two statements holds.

(1) R is reduced, jMin.R/j � 3, and R D .z1; z2/ for some z1; z2 2 Z.R/�.
(2) R is not reduced and R D .z1; z2/ for some z1; z2 2 Z.R/�.

Moreover, if there is a zero-divisor path from x to y for every x; y 2 R�, then
diamZ.R/ 2 f2; 3g and R is not quasilocal.

Theorem 3.4 ([8, Theorem 5.2]). Let R be a commutative ring. Then diamZ.R/ 2
f0; 1; 2; 3; 1g.

Theorem 3.5 ([8, Theorem 5.3]). Let R D R1 � R2 for commutative local
.quasilocal/ rings R1, R2 with maximal ideals M1; M2, respectively, and Nil.R2/ 6D
f0g. If there are a1 2 U.R1/ and a2 2 U.R2/ such that .2a1; 2a2/ 2 U.R/ and
.a1; a2/ C .2a1; 2a2/ … Z.R/, then diamZ.R/ D 3.

Let x; y 2 R� be distinct. We say that x � a1 � � � � � an � y is a regular path
from x to y if a1; : : : ; an 2 Reg.R/ and ai C aiC1 2 Z.R/ for every 0 � i � n (let
x D a0 and y D anC1). We define dreg.x; y/ to be the length of a shortest regular
path from x to y (dreg.x; x/ D 0 and dreg.x; y/ D 1 if there is no such path), and
diamreg.R/ D supf dreg.x; y/ j x; y 2 R� g. In particular, if x; y 2 R� are distinct
and xCy 2 Z.R/, then x�y is a regular path from x to y with dreg.x; y/ D 1. Note
that diamreg.Z2/ D 0, diamreg.Z3/ D 1, and diamreg.R/ D 1 for any other integral
domain R. We also have maxf diam.T .� .R///, diam.Reg.� .R/// g � diamreg.R/.

Theorem 3.6 ([8, Theorem 5.6]). Let R be a commutative ring with diam
.T0.� ..R/// D n < 1.

(1) Let u 2 U.R/, s 2 R�, and P be a shortest path from s to u of length n � 1 in
T0.� .R//. Then P is a regular path from s to u.

(2) Let u 2 U.R/, s 2 R�, and P W s � a1 � � � � � an D u be a shortest path from
s to u of length n in T0.� .R//. Then either P is a regular path from s to u, or
a1 2 Z.R/� and a1 �� � ��an D u is a regular path of length n�1 D dT0.a1; u/.

Theorem 3.7 ([8, Theorem 5.7]). Let R be a commutative ring.

(1) If s 2 Reg.R/ and w 2 Nil.R/�, then there is no regular path from s to w. In
particular, if there is a regular path from x to y for every x; y 2 R�, then R is
reduced.

(2) If R is reduced and quasilocal, then there is no regular path from any unit to
any nonzero nonunit in R.

In particular, if there is a regular path from x to y for every x; y 2 R�, then R

is reduced and not quasilocal.
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Recall from [28] that a commutative ring R is a p.p. ring if every principal
ideal of R is projective. For example, a commutative von Neumann regular ring
is a p.p. ring, and Z � Z is a p.p. ring that is not von Neumann regular. It was
shown in [34, Proposition 15] that a commutative ring R is a p.p. ring if and only if
every element of R is the product of an idempotent element and a regular element
of R (thus a commutative p.p. ring that is not an integral domain has nontrivial
idempotents).

Theorem 3.8 ([8, Theorem 5.9, Corollary 5.10]). Let R be a commutative
p.p. ring that is not an integral domain. Then there is a regular path from x

to y for every x; y 2 R�. Moreover, diamreg.R/ D 2. In particular, if R be a
commutative von Neumann regular ring that is not a field, then there is a regular
path from x to y for every x; y 2 R� and diamreg.R/ D 2.

Theorem 3.9 ([8, Theorem 5. 14]). Let R be a commutative ring that is not an
integral domain. Then there is a regular path from x to y for every x; y 2 R� if and
only if R is reduced, Reg.� .R// is connected, and for each a 2 Z.R/� there is a
b 2 Z.R/� such that dz.a; b/ > 1 .it is possible that dz.a; b/ D 1/.

Theorem 3.10 ([8, Corollary 5.15]). Let R be a reduced commutative ring such
that j Min.R/ jD 2. Then there is a regular path from x to y for every x; y 2 R� if
and only if Reg.� .R// is connected.

4 Generalized Total Graph

A subset H of R becomes a multiplicative-prime subset of R if the following two
conditions hold: (i) ab 2 H for every a 2 H and b 2 R, and (ii) if ab 2 H

for a; b 2 R, then either a 2 H or b 2 H . For example, H is multiplicative-
prime subset of R if H is a prime ideal of R, H is a union of prime ideals of R,
H D Z.R/, or H D R n U.R/. In fact, it is easily seen that H is a multiplicative-
prime subset of R if and only if R n H is a saturated multiplicatively closed subset
of R. Thus H is a multiplicative-prime subset of R if and only if H is a union of
prime ideals of R [30, Theorem 2]. Note that if H is a multiplicative-prime subset
of R, then Nil.R/ � H � R n U.R/; and if H is also an ideal of R, then H is
necessarily a prime ideal of R. In particular, if R D Z.R/ [ U.R/ (e.g., R is finite),
then Nil.R/ � H � Z.R/.

Let H be a multiplicative-prime subset of a commutative ring R. the generalized
total graph of R, denoted by GTH .R/, as the (simple) graph with all elements of R

as vertices, and for distinct x; y 2 R, the vertices x and y are adjacent if and only if
x C y 2 H . For A � R, let GTH .A/ be the induced subgraph of GTH .R/ with all
elements of A as the vertices. For example, GTH .RnH/ is the induced subgraph of
GTH .R/ with vertices R n H . When H D Z.R/, we have that GTH .R/ is the so-
called total graph of R as introduced in [7] and denoted there by T .� .R//. As to be
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expected, GTH .R/ and T .� .R// share many properties. However, the concept of
generalized total graph, unlike the earlier concept of total graph, allows us to study
graphs of integral domains.

Theorem 4.1 ([9, Theorem 4.1]). Let H be a prime ideal of a commutative ring
R, and let jH j D ˛ and jR=H j D ˇ.

1. If 2 2 H , then GTH .R n H/ is the union of ˇ � 1 disjoint K˛0s.
2. If 2 … H , then GTH .R n H/ is the union of .ˇ � 1/=2 disjoint K˛;˛’s.

Theorem 4.2 ([9, Theorem 4.2]). Let H be a prime ideal of a commutative ring R.

1. GTH .R n H/ is complete if and only if either R=H Š Z2 or R Š Z3.
2. GTH .R n H/ is connected if and only if either R=H Š Z2 or R=H Š Z3.
3. GTH .R n H/ .and hence GTH .H/ and GTH .R// is totally disconnected if and

only if H D f0g .thus R is an integral domain/ and char.R/ D 2.

The next theorem gives a more explicit description of the diameter and girth of
GTH .R n H/ when H is a prime ideal of R.

Theorem 4.3 ([9, Theorem 4.4]). Let H be a prime ideal of a commutative ring R.

1. a. diam.GTH .R n H// D 0 if and only if R Š Z2.
b. diam.GTH .R n H// D 1 if and only if either R=H Š Z2 and R 6Š Z2 .i.e.,

R=H Š Z2 and jH j � 2/, or R Š Z3.
c. diam.GTH .R n H// D 2 if and only if R=H Š Z3 and R 6Š Z3 .i.e.,

R=H Š Z3 and jH j � 2/.
d. Otherwise, diam.GTH .R n H// D 1.

2. a. gr.GTH .R n H// D 3 if and only if 2 2 H and jH j � 3.
b. gr.GTH .R n H// D 4 if and only if 2 … H and jH j � 2.
c. Otherwise, gr.GTH .R n H// D 1.

3. a. gr.GTH .R// D 3 if and only if jH j � 3.
b. gr.GTH .R// D 4 if and only if 2 … H and jH j D 2.
c. Otherwise, gr.GTH .R// D 1.

The following examples illustrate the previous theorem.

Example 4.4 ([9, Example 4.5]). (a) Let R D Z and H be a prime ideal of R. Then
GTH .RnH/ is complete if and only if H D 2Z, and GTH .RnH/ is connected
if and only if either H D 2Z or H D 3Z. Moreover, diam.GTH .R n H// D 1

if and only if H D 2Z, and diam.GTH .R n H// D 2 if and only if H D 3Z.
Let p � 5 be a prime integer and H D pZ. Then GTH .R n H/ is the union of
.p�1/=2 disjoint K!;!’s; so diam.GTH .RnH// D 1. Finally, diam.GTH .Rn
H// D 1 when H D f0g.
Also, gr.GTH .R n H// D 1 if H D f0g, gr.GTH .R n H// D 3 if H D 2Z,
and gr.GTH .R n H// D 4 otherwise. Moreover, gr.GTf0g.R// D 1 and
gr.GTH .R// D 3 for any nonzero prime ideal H of R.

(b) Let R D Zpm � R1 � � � � � Rn, where m � 2 is an integer, p is a positive prime
integer, and R1; : : : ; Rn are commutative rings. Then H D pZpm�R1�� � ��Rn
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is a prime ideal of R. The graph GTH .R n H/ is complete if and only if p D 2,
and GTH .R n H/ is connected if and only if p D 2 or p D 3. Moreover,
diam.GTH .R n H// D 1 if and only if p D 2, and diam.GTH .R n H// D 2 if
and only if p D 3. Assume that p � 5. Then GTH .R n H/ is the union of .p �
1/=2 disjoint K˛;˛’s, where ˛ D mjR1j � � � jRnj; so diam.GTH .R n H// D 1.

Also, gr.GTH .R n H// D 3 if p D 2 and gr.GTH .R n H// D 4 otherwise.
Moreover, gr.GTH .R// D 3 for any prime p.

Theorem 4.5 ([9, Theorem 4.7]). Let H be a prime ideal of a commutative ring R.
Then the following statements are equivalent.

1. GTH .R n H/ is connected.
2. Either x C y 2 H or x � y 2 H for every x; y 2 R n H .
3. Either x C y 2 H or x C 2y 2 H for every x; y 2 R n H . In particular, either

2x 2 H or 3x 2 H .but not both/ for every x 2 R n H .
4. Either R=H Š Z2 or R=H Š Z3.

Theorem 4.6 ([9, Theorem 5.1(3)]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R. If GTH .R n H/ is
connected, then GTH .R/ is connected.

Theorem 4.7 ([9, Theorem 5.2, Theorem 5.3]). Let R be a commutative ring and
H a multiplicative-prime subset of R that is not an ideal of R. Then GTH .R/ is
connected if and only if 1 D z1 C � � � C zn, for some z1; : : : ; zn 2 H . In particular, if
H is not an ideal of R and either dim.R/ D 0 .e.g., R is finite/ or R is an integral
domain with diam.R/ D 1, then GTH .R/ is connected. Furthermore, suppose that
GH .R/ is connected. Let n � 2 be the least integer such that 1 D z1 C � � � C zn

for some z1; : : : ; zn 2 H . Then diam.GTH .R// D n. In particular, if H is not an
ideal of R and either dim.R/ D 0 .e.g., R is finite/ or R is an integral domain with
dim.R/ D 1, then diam(GTH .R// D 2.

Theorem 4.8 ([9, Corollary 5.5]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R such that GTH .R/ is
connected.

1. diam.GTH .R// D d.0; 1/.
2. If diam.GTH .R// D n, then diam.GTH .R n H// � n � 2.

Theorem 4.9 ([9, Theorem 5.15)]). Let R be a commutative ring and H a
multiplicative-prime subset of R that is not an ideal of R.

1. Either gr.GTH .H// D 3 or gr.GTH .H// D 1. Moreover, if gr.GTH .H// D
1, then R Š Z2 � Z2 and H D Z.R/; so GTH .H/ is a K1;2 star graph with
center 0.

2. gr.GTH .R// D 3 if and only if gr.GTH .H// D 3.
3. gr.GTH .R// D 4 if and only if gr.GTH .H// D 1 .if and only if R Š Z2 �Z2/.
4. If char.R/ D 2, then gr.GTH .R n H// D 3 or 1. In particular, gr.GTH .R n

H// D 3 if char.R/ D 2 and GTH .R n H/ contains a cycle.
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5. gr.GTH .R n H// D 3; 4, or 1. In particular, gr.GTH .R n H// � 4 if GTH .R n
H/ contains a cycle.

Let R be a commutative ring. Recall that a subset S of R is called a multiplica-
tively closed subset of R if S is closed under multiplication. A multiplicatively
closed subset S of R is called saturated if xy 2 S implies that x 2 S and y 2 S .

Let S be multiplicatively closed subset of a commutative ring R. The graph
�S .R/ is a simple undirected graph with all elements of R as vertices, and two
distinct vertices x and y of R are adjacent if and only if x C y 2 S .

Theorem 4.10 ([18, Corollary 1.6]). Suppose that S is an ideal of R with jS j D n

and jR=S j D m.

1. If 2 2 S , then �S .R/ is the union of m disjoint Kn’s.
2. If 2x … S for each x 2 R, then �S .R/ is the union of Kn with .m � 1/=2 disjoint

Kn;n’s.

Theorem 4.11 ([18, Proposition 2.1]). The graph �S .R/ is complete if and only if
S D R or .charR D 2 and S D R n f0g/.
Theorem 4.12 ([18, Proposition 2.1]). Let S be a saturated multiplicatively closed
subset of R with R S D [n

iD1Pi such that jR=Pi j D 2 for some i . Then �S .R/ is
a bipartite graph. Furthermore, �S .R/ is a complete bipartite graph if and only if
n D 1.

Theorem 4.13 ([18, Theorem 2.15]). Let R be finite commutative ring and S be a
saturated multiplicatively closed subset of R. Then gr.�S .R// 2 f3; 4; 6; Ą1g.

The following is an example of saturated multiplicatively closed sets, to show
that each of the numbers 3; 4; 6, and 1 given in the previous theorem can appear as
the girth of some graphs.

Example 4.14 ([18, Example 2.16]). Let R D Z6. Then gr.�Z.R/.R// D 3,
gr.�U.R/.R// D 6, and gr.�S .R// D 4, where S D f1; 3; 5g. For the saturated
multiplicatively closed subset S D f�1; 1g of Z, we have gr.�S .R// D 1.

Theorem 4.15 ([18, Theorem 2.17]). Let R be finite and S be a saturated
multiplicatively closed subset of R. Then gr.�S .R// D Ą1 if and only if one of
the following statements holds:

1. R D Z3.
2. R D Z2 � � � � � Z2 and jS j D 1.

Theorem 4.16 ([18, Theorem 2.23]). Let R be a finite commutative ring. For
a saturated multiplicatively closed subset S of R, we have diam.�S.R// 2
f1; 2; 3; Ą1g.
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