On the Total Graph of a Ring and Its Related Graphs: A Survey

Ayman Badawi

Abstract

Let R be a (commutative) ring with nonzero identity and $Z(R)$ be the set of all zero divisors of R. The total graph of R is the simple undirected graph $T(\Gamma(R))$ with vertices all elements of R, and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. This type of graphs has been studied by many authors. In this paper, we state many of the main results on the total graph of a ring and its related graphs.

Keywords Total graph • Zero divisors • Diameter • Girth • Connected graph Genus • Generalized total graph • Dominating set • Clique • Chromatic number

MSC(2010) classification: 13A15, 13B99, 05C99.

1 Introduction

Over the past several years, there has been considerable attention in the literature to associating graphs with commutative rings (and other algebraic structures) and studying the interplay between ring-theoretic and graph-theoretic properties; see the recent survey articles [13,32]. For example, as in [10], the zero-divisor graph of R is the (simple) graph $\Gamma(R)$ with vertices $Z(R) \backslash\{0\}$, and distinct vertices x and y are adjacent if and only if $x y=0$; see the articles $[6,11-12,15-17,19,36]$. The total graph (as in [7]) has been investigated in [2-5, 25, 32, 33, 35, 37]; and several

[^0]variants of the total graph have been studied in $[1,8,9,14,16,18,21-24,26,27,31]$. The goal of this survey article is to enclose many of the main results on the total graph of a commutative ring and its related graphs.

Let G be a (simple) graph. We say that G is connected if there is a path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no such path). The diameter of G is $\operatorname{diam}(G)=$ $\sup \{d(x, y) \mid x$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G contains no cycles). The eccentricity of a vertex x in G is the distance between x and the vertex which is at the greatest distance from $x, e(x)=\max \{d(x, y) \mid y$ is a vertex in $G A\}$. The radius of the graph $G, r(G)$, is defined by $r(G)=\min \{e(x) \mid x$ is a vertex in $G\}$, and the center of the graph is the set of all of its vertices whose eccentricity is minimal, i.e., it is equal to the radius. So, the radius of the graph is equal to the smallest eccentricity and diameter to the largest eccentricity of a vertex in this graph. It is well known that for connected graphs of diameter d and radius r, one has $r \leq d \leq 2 r$. Recall that a clique in a graph is a set of pairwise adjacent vertices. The clique number of a graph G, denoted by $\omega(G)$, is the order of a largest clique in G. Also, $\chi(G)$ denotes the chromatic number of G and is the minimum number of colors which is needed for a proper coloring of G, i.e., a coloring of the vertices of G such that adjacent vertices have distinct colors. We denote the complete graph on n vertices by K^{n} and the complete bipartite graph on m and n vertices by $K^{m, n}$ (we allow m and n to be infinite cardinals). We will sometimes call a $K^{1, n}$ a star graph. We say that two (induced) subgraphs G_{1} and G_{2} of G are disjoint if G_{1} and G_{2} have no common vertices and no vertex of G_{1} (resp., G_{2}) is adjacent (in G) to any vertex not in G_{1} (resp., G_{2}). By abuse of notation, we will sometimes write $G_{1} \subseteq G_{2}$ when G_{1} is a subgraph of G_{2}. A general reference for graph theory is [20].

Throughout this paper, all rings R are with $1 \neq 0$. Let R be a commutative ring with nonzero identity. Then $Z(R)$ denotes its set of zero divisors, $\operatorname{Nil}(R)$ denotes its ideal of nilpotent elements, $\operatorname{Reg}(R)$ denotes its set of nonzero divisors (i.e., $\operatorname{Reg}(R)=R \backslash Z(R)$), and $U(R)$ denotes its group of units. For $A \subseteq R$, let $A^{*}=A \backslash\{0\}$. We say that R is reduced if $\operatorname{Nil}(R)=\{0\}$, and $\operatorname{dim}(R)$ will always mean Krull dimension. As usual, $\mathbb{Z}, \mathbb{Q}, \mathbb{Z}_{n}$, and \mathbb{F}_{q} will denote the integers, rational numbers, integers modulo n, and the finite field with q elements, respectively. General references for ring theory are [29,30].

2 The Total Graph of a Ring

In [7], Anderson and I defined the total graph of R to be the (undirected) graph $T(\Gamma(R))$ with all elements of R as vertices, and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$. Let $\operatorname{Reg}(T((\Gamma(R)))$ be the (induced) subgraph of $T(\Gamma(R))$ with vertices $\operatorname{Reg}(R)$.

Theorem 2.1 ([7, Theorem 2.2]). Let R be a commutative ring such that $Z(R)$ is an ideal of R, and let $|Z(R)|=\alpha$ and $|R / Z(R)|=\beta$.

1. If $2 \in Z(R)$, then $\operatorname{Reg}\left(T(\Gamma(R))\right.$ is the union of $\beta-1$ disjoint $K^{\alpha \prime}$ s.
2. If $2 \notin Z(R)$, then $\operatorname{Reg}\left(T(\Gamma(R))\right.$ is the union of $(\beta-1) / 2$ disjoint $K^{\alpha, \alpha \prime}$ s.

Theorem 2.2 ([7, Theorem 2.4]). Let R be a commutative ring such that $Z(R)$ is an ideal of R. Then

1. $\operatorname{Reg}\left(T(\Gamma(R))\right.$ is complete if and only if either $R / Z(R) \cong \mathbb{Z}_{2}$ or $R \cong \mathbb{Z}_{3}$.
2. $\operatorname{Reg}\left(T(\Gamma(R))\right.$ is connected if and only if either $R / Z(R) \cong \mathbb{Z}_{2}$ or $R / Z(R) \cong \mathbb{Z}_{3}$.
3. $\operatorname{Reg}(T(\Gamma(R))$ is totally disconnected if and only if R is an integral domain with $\operatorname{char}(R)=2$.

Theorem 2.3 ([7, Theorem 2.9]). Let R be a commutative ring such that $Z(R)$ is an ideal of R. Then the following statements are equivalent:

1. $\operatorname{Reg}(T(\Gamma(R))$ is connected.
2. Either $x+y \in Z(R)$ or $x-y \in Z(R)$ for all $x, y \in \operatorname{Reg}(R)$.
3. Either $x+y \in Z(R)$ or $x+2 y \in Z(R)$ for all $x, y \in \operatorname{Reg}(R)$. In particular, either $2 x \in Z(R)$ or $3 x \in Z(R)$ (but not both) for all $x \in \operatorname{Reg}(R)$.
4. Either $R / Z(R) \cong \mathbb{Z}_{2}$ or $R / Z(R) \cong \mathbb{Z}_{3}$.

Theorem 2.4 ([7, Theorems 3.3, 3.4]). Let R be a commutative ring such that $Z(R)$ is not an ideal of R. Then $T(\Gamma(R))$ is connected if and only if $1=z_{1}+\cdots+z_{n}$ for some $z_{1}, \ldots, z_{n} \in Z(R)$. Furthermore, suppose that $T(\Gamma(R))$ is connected and let n be the least integer $1=z_{1}+\cdots+z_{n}$ for some $z_{1}, \ldots, z_{n} \in Z(R)$. Then $\operatorname{diam}(T(\Gamma(R)))=n$. In particular, if R is a finite commutative ring and $Z(R)$ is not an ideal of R, then $\operatorname{diam}(T(\Gamma(R)))=2$.

In the following example, for each integer $n \geq 2$, we construct a commutative ring R_{n} such that $Z\left(R_{n}\right)$ is not an ideal of R_{n} and $T\left(\Gamma\left(R_{n}\right)\right)$ is connected with $\operatorname{diam}(T(\Gamma(R)))=n$.

Example 2.5. Let $n \geq 2$ be an integer, $D=Z\left[X_{1}, X_{2}, \ldots, X_{n-1}\right], K$ be the quotient field of $D, P_{0}=\left(X_{1}+X_{2}+A_{2} \cdots+X_{n-1}\right), P_{i}=\left(X_{i}\right)$ for each integer i with $1 \leq i \leq n-2$, and $P_{n-1}=\left(X_{n-1}+1\right)$. Then $P_{0}, P_{1}, \ldots, P_{n-1}$ are distinct prime ideals of D. Let $F=P_{0} \cup P_{1} \mathrm{~A} \cup \cdots \cup P_{n-1}$; then $S=D F$ is a multiplicative subset of D. Set $R_{n}=D(+)\left(K / D_{S}\right)$. Then $\left.Z\left(R_{n}\right)=F(+)\left(K / D_{S}\right)\right)$. Since $(1,0)=\left(-X_{1}-X 2-\cdots-X_{n-1}, 0\right)+\left(X_{1}, 0\right)+\left(X_{2}, 0\right)+\left(X_{3}, 0\right)+\mathrm{A}_{2} \cdots+$ ($X_{n-1}+1,0$) is the sum of n zero divisors of R_{n}, by construction we conclude that n is the least integer $m \geq 2$ such that 1 is the sum of m zero divisors of R_{n}. Hence $T\left(\Gamma\left(R_{n}\right)\right.$ is connected with $\operatorname{diam}\left(T\left(\Gamma\left(R_{n}\right)\right)\right)=n$ by Theorems 2.4 above.

Theorem 2.6 ([7, Theorem 3.1]). If $\operatorname{Reg}(\Gamma(R))$ is connected, then $T(\Gamma(R))$ is connected.

The converse of Theorem 2.6 is not true. We have the following example.

Example 2.7. Let $R=\mathbb{Q}[X](+)(\mathbb{Q}(X) / \mathbb{Q}[X])$. Then one can easily show that $Z(R)=\left(\mathbb{Q}[X] \mathbb{Q}^{*}\right)(+)(\mathbb{Q}(X) / \mathbb{Q}[X])$ is not an ideal of R and $\operatorname{Reg}(R)=U(R)=$ $\mathbb{Q}^{*}(+)(\mathbb{Q}(X) / \mathbb{Q}[X])$. Thus $T(\Gamma(R))$ is connected with $\operatorname{diam}(T(\Gamma(R))=2$ (by Theorems 2.4) since $(1,0)=(X, 0)(+)(X+1,0)$ with $(X, 0),(X+1,0) \in Z(R)$. However, $\operatorname{Reg}(\Gamma(R))$ is not connected since there is no path from $(1,0)$ to $(2,0)$ in $\operatorname{Reg}(\Gamma(R))$.

Theorem 2.8. 1. [7, Corollary 3.5] If $T(\Gamma(R))$ is connected, then diam $(T(\Gamma(R))=d(0,1)$.
2. [7, Corollary 3.5] If $T(\Gamma(R))$ is connected and $\operatorname{diam}(T(\Gamma(R))=n$, then $\operatorname{diam}(\operatorname{Reg}(\Gamma(R))) \geq n-2$.
3. [4, Corollary 1] If R is a commutative Noetherian ring and $T(\Gamma(R))$ is connected with diameter n, then $n-2 \leq \operatorname{diam}(\operatorname{Reg}(\Gamma(R))) \leq n$.

Theorem 2.9 ([8, Theorem 4.4]). Let R be a commutative ring.
(1) If R is either an integral domain or isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, then $\operatorname{gr}(T(\Gamma(R)))=\infty$.
(2) If R is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $\operatorname{gr}(T(\Gamma(R)))=4$.
(3) Otherwise, $\operatorname{gr}(T(\Gamma(R)))=3$.

Theorem 2.10 ([35, Theorem 2.1]). Let R be a finite commutative ring with 1 such that $Z(R)$ is not an ideal of R. Then $r(T(\Gamma(R)))=2$.

Theorem 2.11 ([35, Theorem 2.2]). Let R be a commutative ring with 1 such that $Z(R)$ is not an ideal of R, and let n be the smallest integer such that $1=z_{1}+\cdots+z_{n}$, for some $z_{1}, \ldots, z_{n} \in \operatorname{A} Z(R)$. Then $r(T(\Gamma(R)))=n$.

Theorem 2.12 ([35, Theorem 3.2]). Let R be a ring such that $Z(R)$ is not an ideal of R. Then $T(\Gamma(R[x]))$ is connected if and only if $T(\Gamma(R))$ is connected. Furthermore if $\operatorname{diam}(T(\Gamma(R)))=n$, then $\operatorname{diam}(T(\Gamma(R[x])))=r(T(\Gamma(R[x]))=n$.

Theorem 2.13 ([35, Theorem 3.4]). Let R be a reduced ring such that $Z(R)$ is not an ideal of R. Then $T(\Gamma(R[[x]]))$ is connected if and only if $T(\Gamma(R))$ is connected. Furthermore if $\operatorname{diam}(T(\Gamma(R)))=n$, then $\operatorname{diam}(T(\Gamma(R[[x]])))=$ $r(T(\Gamma(R[[x]]))=n$.

Let G be a simple undirected graph. Recall that a Hamiltonian path of G is a path in G that visits each vertex of G exactly once. A Hamilton cycle (circuit) of G is a Hamilton path that is a cycle. A graph G is called a Hamilton graph if it has a Hamilton cycle.

Theorem 2.14 ([4, Theorem 3]). Let R be a finite commutative ring such that $Z(R)$ is not an ideal. Then the following statements hold:

1. $T(\Gamma(R))$ is a Hamiltonian graph.
2. $\operatorname{Reg}(\Gamma(R))$ is a Hamiltonian graph if and only if R is isomorphic to none of the rings: $\mathbb{Z}_{2}^{n+1}, \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{3}, \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{4}, \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right)$, where n is a natural number.

Theorem 2.15 ([25, Theorem 5.2]). If R is a commutative ring and diam $(T(\Gamma(R)))=2$, then $T(\Gamma(R))$ is Hamilton graph.

Theorem 2.16 ([25, Corollary 5.3]). If R is an Artinian ring, then $T(\Gamma(R))$ is Hamilton graph.

Recall that a simple undirected graph is called a planar graph if it can be drawn on the plane in such way that no edges cross each other. Recall that a commutative ring R is called a local (quasilocal) ring if it has exactly one maximal ideal.

Theorem 2.17 ([33, Theorem 1.5]). Let R be a finite commutative ring such that $T(\Gamma(R))$ is planar. Then the following statements hold:

1. If R is a local ring, then R is a field or R is isomorphic to one of the following rings:
$\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{2}[X] /\left(X^{3}\right), \mathbb{Z}_{2}[X, Y] /(X, Y)^{2}, \mathbb{Z}_{4}[X] /\left(2 X, X^{2}\right)$
$\mathbb{Z}_{4}[X] /\left(2 X, X^{2}-2\right), \mathcal{Z}_{8}, \mathbb{F}_{4}[X]\left(X^{2}\right), \mathbb{Z}_{4}[X] /\left(X^{2}+X+1\right)$, where \mathbb{F}_{4} is a field with exactly four elements.
2. If R is not a local ring, then R isomorphic to either $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{6}.

A simple undirected nonplanar graph G is called toroidal if the vertices of G can be placed on a torus such that no edges cross.

Theorem 2.18 ([33, Theorem 1.6]). Let R be a finite commutative ring such that $T(\Gamma(R))$ is toroidal. Then the following statements hold:

1. If R is a local ring, then R is isomorphic to either \mathbb{Z}_{9} or $\mathbb{Z}_{3} /\left(x^{2}\right)$.
2. If R is not a local ring, then R is isomorphic to one of the following rings: $\mathbb{Z}_{2} \times$ $\mathbb{F}_{4}, \mathbb{Z}_{3} \times \mathbb{Z}_{3}, \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, where \mathbb{F}_{4} is a field with exactly four elements.

Let S_{k} denote the sphere with k handles, where k is a nonnegative integer, that is, k is an oriented surface with k handles. The genus of a graph G, denoted $G(G)$, is the minimal integer n such that the graph can be embedded in S_{n}. Intuitively, G is embedded in a surface if it can be drawn in the surface so that its edges intersect only at their common vertices. Note that a graph G is a planar iff $g(G)=0$ and G is toroidal iff $g(G)=1$. Note that if x is a real number, then $\lceil x\rceil$ is the least integer that is greater than or equal to x.

Theorem 2.19 ([24, Theorem 3.2]). Let R be a finite commutative ring with identity, I be an ideal contained in $Z(R),|I|=n$ and $|R / I|=m$. Then the following statements are true:

1. If $2 \in I$, then $g(T(\Gamma(R))) \geq m\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.
2. If $2 \notin I$, then $g(T(\Gamma(R))) \geq\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil+\left(\frac{m-1}{2}\right)\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.

Theorem 2.20 ([24, Corollary 3.4]). Let R be a finite commutative ring with identity such that $Z(R)$ is an ideal of $R,|Z(R)|=n$ and $|R / Z(R)|=m$. Then the following statements hold:

1. If $2 \in Z(R)$, then $g(T(\Gamma(R)))=m\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil$.
2. If $2 \notin I$, then $g(T(\Gamma(R)))=\left\lceil\frac{(n-3)(n-4)}{12}\right\rceil+\left(\frac{m-1}{2}\right)\left\lceil\frac{(n-2)^{2}}{4}\right\rceil$.

Theorem 2.21 ([24, Theorem 4.3]). Let R be a finite commutative ring. Then $g(T(\Gamma(R)))=2$ if and only if R is isomorphic to either \mathbb{Z}_{10} or $\mathbb{Z}_{3} \times \mathbb{F}_{4}$, where \mathbb{F}_{4} is a field with four elements.

Let v be a vertex of a simple undirected graph G. Then the degree of v is denoted by $\operatorname{deg}(v)$. We say $\operatorname{deg}(v)=k$ if there are exactly k (distinct) vertices in G where each vertex is connected to v by an edge. Let G be a simple undirected graph. We say that G is Eulerian if it is connected and its vertex degrees are all even.

Theorem 2.22. 1. [37, Theorem 3.3] Let R be a finite commutative ring. Then $T(\Gamma(R))$ is Eulerian if and only if R is isomorphic to a direct sum of two or more finite fields of even orders, i.e., $R \cong \bigoplus_{i=1}^{k} \mathbb{F}_{2^{t_{i}}}$ for some $k \geq 2$.
2. [25, Lemma 5.1] Suppose that $Z(R)$ is not an ideal of R. Then $T(\Gamma(R)$ is Eulerian if and only if $2 \in Z(R)$ and $|Z(R)|$ is an odd integer.

Let G be a simple undirected graph with V as its set of vertices. A subset S of V is called a dominating set of G if for every $a \in V \backslash S$, there is a $b \in S$ such that $a-b$ is an edge of the graph G. The domination number $\gamma(G)$ is the minimum size of a dominating set of G.

Theorem 2.23 ([37, Theorem 4.1]). Let R be a finite commutative ring and $n=$ $\min \{|R / M| \mid M$ is a maximal ideal of $R\}$. Then $\gamma(T(\Gamma(R)))=n$, except when R is a (finite) field of an odd order, where $\gamma(T(\Gamma(R)))=\frac{n-1}{2}+1$.

Let $H=\{d \mid d$ is a dominating set of $T(\Gamma(R))\}$. The intersection graph of dominating sets denoted by $I T(R)$ is a simple undirected graph with vertex set H and two distinct vertices a and b in H are adjacent if an only if $a \cap b=\emptyset$ (see $[26,27])$.

Theorem 2.24 ([26, Theorem 3.1]). Let R be a commutative Artinian ring with $|R| \geq 4$ and let I be an annihilator ideal of R such that $|R / I|$ is finite. Then

1. $I T(R)$ is connected and $\operatorname{diam}(I T(R)) \leq 2$.
2. $\operatorname{gr}(I T(R))) \in\{3,4\}$. In particular, $\operatorname{gr}(I T(R))=4$ if and only if either $R \cong \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.
Theorem 2.25 ([26, Theorem 3.2]). Let R be a commutative Artinian ring with $|R| \geq 4$ and let I be an annihilator ideal of R such that $|R / I|$ is finite. Then
3. IT (R) is a regular graph (i.e., all vertices in $I T(R)$ have the same degree).
4. $I T(R)$ is a complete graph if and only if R is an integral domain.
5. $I T(R)$ is a bipartite graph if and only if either $R \cong \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.
6. IT (R) is a cycle if and only if either $R \cong \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$.

Theorem 2.26 ([26, Theorem 5.4]). Let R be a finite commutative ring. Then

1. IT (R) is planar if and only if R is isomorphic to either \mathbb{Z}_{3} or \mathbb{Z}_{4} or \mathbb{Z}_{5} or $\mathbb{Z}_{2}[x] /\left(X^{2}\right)$ or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or $\mathbb{F}_{2^{n}}$ (a field with 2^{n} elements) for some positive integer $n \geq 1)$.
2. IT(R)) is toroidal if and only if $R \cong \mathbb{Z}_{6}$.
3. $g(I T(R))=2$ if and only if $R \cong \mathbb{Z}_{7}$.

Theorem 2.27 ([26, Theorem 5.5]). If R is a finite commutative ring, then $g(I T(R)) \leq g(T(\Gamma(R)))$.

Theorem 2.28 ([27, Theorem 2.1]). Let R be a commutative Artinian ring with $|R| \geq 4$ and assume that I is the unique annihilator ideal of R such that $|R / I|$ is minimum. Then $I T(R)$ is Eulerian if and only if R is not a field.

Theorem 2.29 ([27, Theorem 2.2]). Let R be a commutative Artinian ring with $|R| \geq 4$ and assume that I is an annihilator ideal of R such that $|R / I|$ is minimum. Then $I T(R)$ is a Hamilton graph.

We recall that a graph G with number of vertices equals $m \geq 3$ is called pancyclic if G contains cycles of all lengths from 3 to m. Also G is called vertex-pancyclic if each vertex v of G belongs to every cycle of length l for $3 \leq l \leq m$.

Theorem 2.30. Let R be a commutative Artinian ring with $|R| \geq 4$ and assume that I is an annihilator ideal of R such that $|R / I|$ is minimum. Then

1. [27, Theorem 2.3] IT(R) is pancyclic if and only if either $R \cong \mathbb{Z}_{4}$ or $R \cong$ $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$.
2. [27, Corollary 2.1] IT (R) is vertex-pancyclic if and only if neither $R \cong \mathbb{Z}_{4}$ nor $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$ (i.e., $I T(R)$ is not pancyclic).

We recall that a perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph.

Theorem 2.31. Let R be a finite commutative ring. Then:

1. [27, Theorem 4.1] $\chi(I T(R)=\omega(I T(R))$.
2. [27, Theorem 4.2] $I T(R)$ is perfect if and only if either R is an integral domain or R has a unique annihilator ideal I with $|R / I|=2$ or $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Let $C T(\Gamma(R))$ denotes the complement of the total graph of a commutative ring R, i.e., $C T(\Gamma(R))$ is a simple undirected graph with R as its vertex set, and two distinct vertices x, y in $C T(\Gamma(R))$ are adjacent if $x+y \in \operatorname{Reg}(R)$.

Recall that a path graph is a particularly simple example of a tree, namely a tree with two or more vertices that is not branched at all, that is, contains only vertices of degree 2 and 1. In particular, it has two terminal vertices (vertices that have degree 1), while all others (if any) have degree 2 .

Theorem 2.32 ([25, Theorem 2.16]). Let R be a commutative ring. Then the following statements are true:

1. $C T(\Gamma(R))$ is a path if and only if $R \cong \mathbb{Z}_{2}$.
2. $C T(\Gamma(R))$ is complete if and only if R is an integral domain and $\operatorname{char}(R)=2$.
3. $C T(\Gamma(R)))$ is a star if and only if either $R \cong \mathbb{Z}_{2}$ or $R \mathbb{Z}_{3}$.
4. $C T(\Gamma(R))$ is a cycle if and only if either $R \cong \mathbb{Z}_{4}$ or $R \cong \mathbb{Z}_{2}[X] /\left(X^{2}\right)$ or $R \cong \mathbb{Z}_{6}$.
5. $C T(\Gamma(R))$ is a complete bipartite graph if and only if either R is a local ring [with maximal ideal $Z(R)]$ such that $R / Z(R) \cong \mathbb{Z}_{2}$ or $R \cong \mathbb{Z}_{3}$.

Theorem 2.33. Let R be a finite commutative ring. Then

1. [25, Corollary 4.5] $\operatorname{gr}(C T(\Gamma(R))=3,4,6, \infty$.
2. [25, Lemma 5.1] Suppose $Z(R)$ is not an ideal of R. Then $C T(\Gamma(R)$ is Eulerian if and only if $2 \in Z(R)$ and $|\operatorname{Reg}(R)|$ is an even integer.
Let $C(R)$ represent a simple undirected graph with vertex set R and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x-y \in Z(R)$. It is natural for one to ask when is $T(\Gamma(R))$ isomorphic to $C(R)$? We have the following result.

Theorem 2.34 ([37, Theorem 5.2]). Let R be a finite commutative ring. Then the two graphs $T(\Gamma(R))$ and $C(R)$ are isomorphic if and only if at least one of the following conditions is true:

1. $R \cong R_{1} \oplus \cdots \oplus R_{k}, k \geq 1$, and each R_{i} is a local ring of an even order.
2. $R \cong R_{1} \oplus \cdots \oplus R_{k}, k \geq 2$, and each R_{i} is a local ring such that $\min \left\{\left|R_{i} / M_{i}\right|\right.$ where M_{i} is the maximal ideal of $\left.R_{i}\right\}=2$.

Let R be a noncommutative ring. Then one can define $T(\Gamma(R))$ and $\operatorname{Reg}(\Gamma(R))$ in the same way as for the commutative case. Let R be a ring. Then $M_{n}(R), G L_{n}(R)$, and $T_{n}(R)$ denote the set of $n \times n$ matrices over R, the set of $n \times n$ invertible matrices over R, and the set of $n \times n$ upper triangular matrices over R, respectively.

Theorem 2.35 ([35, Theorem 3.7]). Let R be a commutative ring. The total graph $T\left(\Gamma\left(M_{n}(R)\right)\right)$ is connected and $\operatorname{diam}\left(T\left(\Gamma\left(M_{n}(R)\right)\right)=2\right.$.

Theorem 2.36 ([3, Theorem 1]). Let F be a field with $\operatorname{char}(F) \neq 2$ and n be a positive integer. Then $\omega\left(\operatorname{Reg}\left(\Gamma\left(M_{n}(F)\right)\right)\right)<\infty$, and moreover $\omega\left(\operatorname{Reg}\left(\Gamma\left(M_{n}(F)\right)\right)\right) \leq \sum_{k=0}^{n} \frac{(n!)^{2}}{k![(n-k)!]^{2}}$.
Theorem 2.37 ([3, Theorem 2]). For every field F with $\operatorname{char}(F) \neq 2$, $\omega\left(\operatorname{Reg}\left(\Gamma\left(M_{2}(F)\right)\right)\right)=5$.

Theorem 2.38 ([3, Theorem 3]). For every division ring D, $\operatorname{char}(D) \neq 2$, $\operatorname{diag}(\pm 1, \ldots, \pm 1\} \ldots, \pm 1)$ (the set of all diagonal matrices with diagonal entries in the set $\{-1,1\}$ forms a maximal clique for $\left.\operatorname{Reg}\left(\Gamma\left(M_{n}(D)\right)\right)\right)$.
Theorem 2.39 ([5, Theorem 1]). If F is a field, $\operatorname{char}(F) \neq 2$ and n is a positive integer, then $\chi\left(\operatorname{Reg}\left(\Gamma\left(T_{n}(F)\right)\right)\right)=\omega\left(\operatorname{Reg}\left(\Gamma\left(T_{n}(F)\right)\right)\right)=2^{n}$.

Theorem 2.40 ([2, Theorem 1, Theorem 3]). Let R be a ring (not necessarily commutative $)$. Then $\operatorname{gr}(\operatorname{Reg}(\Gamma(R))), \operatorname{gr}(T(\Gamma(R))) \in\{3,4, \infty\}$.

Recall that a tree is an undirected graph in which any two vertices are connected by exactly one simple path. In other words, any connected graph without simple cycles is a tree. A forest is a disjoint union of trees.

Theorem 2.41 ([2, Theorem 2]). Let R be a left Artinian ring and $\operatorname{Reg}(\Gamma(R))$ be a tree. Then R is isomorphic to one of the following rings: $\mathbb{Z}_{3}, \mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right), \mathbb{Z}_{2}^{r}$, $\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{r}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}^{r}, \mathbb{Z}_{2}[X] /\left(X^{2}\right) \times \mathbb{Z}_{2}^{r}, T_{2}\left(\mathbb{Z}_{2}\right), T_{2}\left(\mathbb{Z}_{2}\right) \times \mathbb{Z}_{2}^{r}$, where $T_{2}\left(\mathbb{Z}_{2}\right)$ denotes the ring of 2×2 upper triangular matrices over \mathbb{Z}_{2} and r is a natural number.

Theorem 2.42 ([2, Theorem 5]). Let R be a finite ring (not necessarily commutative). Then $\operatorname{Reg}(\Gamma(R))$ is regular (i.e., all vertices have the same degree).

Theorem 2.43. Let R be ring (not necessarily commutative). Then

1. [2, Theorem 7] If R is a left Artinian ring and $\operatorname{Reg}(\Gamma(R))$ contains a vertex adjacent to all other vertices, then $\operatorname{Reg}(\Gamma(R))$ is complete.
2. [2, Theorem 8$]$ If $2 \notin Z(R)$ and $\operatorname{Reg}(\Gamma(R))$ is a complete graph, then $J(R)=0$ (where $J(R)$ is the Jacobson radical of R).
3. [2, Theorem 9] If R is a left Artinian ring and $2 \notin Z(R)$, then $\operatorname{Reg}(\Gamma(R))$ is a complete graph, if and only if $R \cong \mathbb{Z}_{3}^{r}$, for some natural number r.
4. [2, Corollary 4] If R is a reduced left Noetherian ring and $2 \notin Z(R)$ such that $\operatorname{Reg}(\Gamma(R))$ is a complete graph, then $R \cong \mathbb{Z}_{3}^{r}$, for some natural number r.

3 The Total Graph of a Commutative Ring Without the Zero Element

In this section, we consider the (induced) subgraph $T_{0}(\Gamma(R))$ of $T(\Gamma(R))$ obtained by deleting 0 as a vertex. Specifically, $T_{0}(\Gamma(R))$) has vertices $R^{*}=R \backslash\{0\}$), and two distinct vertices x and y are adjacent if and only if $x+y \in Z(R)$.

Let $\mathrm{d}_{T}(x, y)$ (resp., $\left.\mathrm{d}_{T_{0}}(x, y)\right)$ denote the distance from x to y in $T(\Gamma(R))$ (resp., $\left.T_{0}(\Gamma(R))\right)$.

Theorem 3.1 ([8, Theorem 4.3]). Let R be a commutative ring. Then $\operatorname{diam}\left(T_{0}(\Gamma(R))\right)=\operatorname{diam}(T(\Gamma(R)))$.

Theorem 3.2 ([8, Theorem 4.5]). Let R be a commutative ring.
(1) If R is either an integral domain or isomorphic to $\mathbb{Z}_{4}, \mathbb{Z}_{2}[X] /\left(X^{2}\right)$, or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=\infty$.
(2) If R is isomorphic to \mathbb{Z}_{9} or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$, then $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=4$.
(3) Otherwise, $\operatorname{gr}\left(T_{0}(\Gamma(R))\right)=3$.

Let $x, y \in R^{*}$ be distinct. We say that $x-a_{1}-\cdots-a_{n}-y$ is a zero-divisor path from x to y if $a_{1}, \ldots, a_{n} \in Z(R)^{*}$ and $a_{i}+a_{i+1} \in Z(R)$ for every $0 \leq i \leq n$ (let $x=a_{0}$ and $\left.y=a_{n+1}\right)$. We define $\mathrm{d}_{Z}(x, y)$ to be the length of a shortest zero-divisor path from x to $y\left(\mathrm{~d}_{Z}(x, x)=0\right.$ and $\mathrm{d}_{Z}(x, y)=\infty$ if there is no such
path) and $\operatorname{diam}_{Z}(R)=\sup \left\{d_{Z}(x, y) \mid x, y \in R^{*}\right\}$. In particular, if $x, y \in R^{*}$ are distinct and $x+y \in Z(R)$, then $x-y$ is a zero-divisor path from x to y with $\mathrm{d}(x, y)=1$.

Let $\operatorname{Min}(R)$ denote the set of all minimal prime ideals of a commutative ring R. Recall that $U(R)$ denotes the set of all units of a commutative ring R.

Theorem 3.3 ([8, Theorem 5.1]). Let R be a commutative ring that is not an integral domain. Then there is a zero-divisor path from x to y for every $x, y \in R^{*}$ if and only if one of the following two statements holds.
(1) R is reduced, $|\operatorname{Min}(R)| \geq 3$, and $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$.
(2) R is not reduced and $R=\left(z_{1}, z_{2}\right)$ for some $z_{1}, z_{2} \in Z(R)^{*}$.

Moreover, if there is a zero-divisor path from x to y for every $x, y \in R^{*}$, then $\operatorname{diam}_{Z}(R) \in\{2,3\}$ and R is not quasilocal.
Theorem 3.4 ([8, Theorem 5.2]). Let R be a commutative ring. Then $\operatorname{diam}_{Z}(R) \in$ $\{0,1,2,3, \infty\}$.

Theorem 3.5 ([8, Theorem 5.3]). Let $R=R_{1} \times R_{2}$ for commutative local (quasilocal) rings R_{1}, R_{2} with maximal ideals M_{1}, M_{2}, respectively, and $\operatorname{Nil}\left(R_{2}\right) \neq$ $\{0\}$. If there are $a_{1} \in U\left(R_{1}\right)$ and $a_{2} \in U\left(R_{2}\right)$ such that $\left(2 a_{1}, 2 a_{2}\right) \in U(R)$ and $\left(a_{1}, a_{2}\right)+\left(2 a_{1}, 2 a_{2}\right) \notin Z(R)$, then $\operatorname{diam}_{Z}(R)=3$.

Let $x, y \in R^{*}$ be distinct. We say that $x-a_{1}-\cdots-a_{n}-y$ is a regular path from x to y if $a_{1}, \ldots, a_{n} \in \operatorname{Reg}(R)$ and $a_{i}+a_{i+1} \in Z(R)$ for every $0 \leq i \leq n$ (let $x=a_{0}$ and $\left.y=a_{n+1}\right)$. We define $d_{\text {reg }}(x, y)$ to be the length of a shortest regular path from x to $y\left(\mathrm{~d}_{\text {reg }}(x, x)=0\right.$ and $\mathrm{d}_{\text {reg }}(x, y)=\infty$ if there is no such path), and $\operatorname{diam}_{\mathrm{reg}}(R)=\sup \left\{d_{\mathrm{reg}}(x, y) \mid x, y \in R^{*}\right\}$. In particular, if $x, y \in R^{*}$ are distinct and $x+y \in Z(R)$, then $x-y$ is a regular path from x to y with $\mathrm{d}_{\mathrm{reg}}(x, y)=1$. Note that $\operatorname{diam}_{\text {reg }}\left(\mathbb{Z}_{2}\right)=0$, $\operatorname{diam}_{\text {reg }}\left(\mathbb{Z}_{3}\right)=1$, and $\operatorname{diam}_{\text {reg }}(R)=\infty$ for any other integral domain R. We also have $\max \{\operatorname{diam}(T(\Gamma(R))), \operatorname{diam}(\operatorname{Reg}(\Gamma(R)))\} \leq \operatorname{diam}_{\mathrm{reg}}(R)$.

Theorem 3.6 ([8, Theorem 5.6]). Let R be a commutative ring with diam $\left(T_{0}(\Gamma((R)))=n<\infty\right.$.
(1) Let $u \in U(R), s \in R^{*}$, and P be a shortest path from s to u of length $n-1$ in $T_{0}(\Gamma(R))$. Then P is a regular path from s to u.
(2) Let $u \in U(R), s \in R^{*}$, and $P: s-a_{1}-\cdots-a_{n}=u$ be a shortest path from s to u of length n in $T_{0}(\Gamma(R))$. Then either P is a regular path from s to u, or $a_{1} \in Z(R)^{*}$ and $a_{1}-\cdots-a_{n}=u$ is a regular path of length $n-1=d_{T_{0}}\left(a_{1}, u\right)$.

Theorem 3.7 ([8, Theorem 5.7]). Let R be a commutative ring.
(1) If $s \in \operatorname{Reg}(R)$ and $w \in \operatorname{Nil}(R)^{*}$, then there is no regular path from s to w. In particular, if there is a regular path from x to y for every $x, y \in R^{*}$, then R is reduced.
(2) If R is reduced and quasilocal, then there is no regular path from any unit to any nonzero nonunit in R.
In particular, if there is a regular path from x to y for every $x, y \in R^{*}$, then R is reduced and not quasilocal.

Recall from [28] that a commutative ring R is a p.p. ring if every principal ideal of R is projective. For example, a commutative von Neumann regular ring is a p.p. ring, and $\mathbb{Z} \times \mathbb{Z}$ is a p.p. ring that is not von Neumann regular. It was shown in [34, Proposition 15] that a commutative ring R is a p.p. ring if and only if every element of R is the product of an idempotent element and a regular element of R (thus a commutative p.p. ring that is not an integral domain has nontrivial idempotents).

Theorem 3.8 ([8, Theorem 5.9, Corollary 5.10]). Let R be a commutative p.p. ring that is not an integral domain. Then there is a regular path from x to y for every $x, y \in R^{*}$. Moreover, $\operatorname{diam}_{\mathrm{reg}}(R)=2$. In particular, if R be a commutative von Neumann regular ring that is not a field, then there is a regular path from x to y for every $x, y \in R^{*}$ and $\operatorname{diam}_{\mathrm{reg}}(R)=2$.

Theorem 3.9 ([8, Theorem 5. 14]). Let R be a commutative ring that is not an integral domain. Then there is a regular path from x to y for every $x, y \in R^{*}$ if and only if R is reduced, $\operatorname{Reg}(\Gamma(R))$ is connected, and for each $a \in Z(R)^{*}$ there is a $b \in Z(R)^{*}$ such that $d_{z}(a, b)>1$ (it is possible that $\left.d_{z}(a, b)=\infty\right)$.

Theorem 3.10 ([8, Corollary 5.15]). Let R be a reduced commutative ring such that $|\operatorname{Min}(R)|=2$. Then there is a regular path from x to y for every $x, y \in R^{*}$ if and only if $\operatorname{Reg}(\Gamma(R))$ is connected.

4 Generalized Total Graph

A subset H of R becomes a multiplicative-prime subset of R if the following two conditions hold: (i) $a b \in H$ for every $a \in H$ and $b \in R$, and (ii) if $a b \in H$ for $a, b \in R$, then either $a \in H$ or $b \in H$. For example, H is multiplicativeprime subset of R if H is a prime ideal of R, H is a union of prime ideals of R, $H=Z(R)$, or $H=R \backslash U(R)$. In fact, it is easily seen that H is a multiplicativeprime subset of R if and only if $R \backslash H$ is a saturated multiplicatively closed subset of R. Thus H is a multiplicative-prime subset of R if and only if H is a union of prime ideals of R [30, Theorem 2]. Note that if H is a multiplicative-prime subset of R, then $\operatorname{Nil}(R) \subseteq H \subseteq R \backslash U(R)$; and if H is also an ideal of R, then H is necessarily a prime ideal of R. In particular, if $R=Z(R) \cup U(R)$ (e.g., R is finite), then $\operatorname{Nil}(R) \subseteq H \subseteq Z(R)$.

Let H be a multiplicative-prime subset of a commutative ring R. the generalized total graph of R, denoted by $G T_{H}(R)$, as the (simple) graph with all elements of R as vertices, and for distinct $x, y \in R$, the vertices x and y are adjacent if and only if $x+y \in H$. For $A \subseteq R$, let $G T_{H}(A)$ be the induced subgraph of $G T_{H}(R)$ with all elements of A as the vertices. For example, $G T_{H}(R \backslash H)$ is the induced subgraph of $G T_{H}(R)$ with vertices $R \backslash H$. When $H=Z(R)$, we have that $G T_{H}(R)$ is the socalled total graph of R as introduced in [7] and denoted there by $T(\Gamma(R))$. As to be
expected, $G T_{H}(R)$ and $T(\Gamma(R))$ share many properties. However, the concept of generalized total graph, unlike the earlier concept of total graph, allows us to study graphs of integral domains.
Theorem 4.1 ([9, Theorem 4.1]). Let H be a prime ideal of a commutative ring R, and let $|H|=\alpha$ and $|R / H|=\beta$.

1. If $2 \in H$, then $G T_{H}(R \backslash H)$ is the union of $\beta-1$ disjoint $K^{\alpha \prime}{ }^{\prime}$.
2. If $2 \notin H$, then $G T_{H}(R \backslash H)$ is the union of $(\beta-1) / 2$ disjoint $K^{\alpha, \alpha}$'s.

Theorem 4.2 ([9, Theorem 4.2]). Let H be a prime ideal of a commutative ring R.

1. $G T_{H}(R \backslash H)$ is complete if and only if either $R / H \cong \mathbb{Z}_{2}$ or $R \cong \mathbb{Z}_{3}$.
2. $G T_{H}(R \backslash H)$ is connected if and only if either $R / H \cong \mathbb{Z}_{2}$ or $R / H \cong \mathbb{Z}_{3}$.
3. $G T_{H}(R \backslash H)$ (and hence $G T_{H}(H)$ and $G T_{H}(R)$) is totally disconnected if and only if $H=\{0\}$ (thus R is an integral domain) and $\operatorname{char}(R)=2$.

The next theorem gives a more explicit description of the diameter and girth of $G T_{H}(R \backslash H)$ when H is a prime ideal of R.

Theorem 4.3 ([9, Theorem 4.4]). Let H be a prime ideal of a commutative ring R.

1. a. $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=0$ if and only if $R \cong \mathbb{Z}_{2}$.
b. $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=1$ if and only if either $R / H \cong \mathbb{Z}_{2}$ and $R \nsubseteq \mathbb{Z}_{2}$ (i.e., $R / H \cong \mathbb{Z}_{2}$ and $|H| \geq 2$), or $R \cong \mathbb{Z}_{3}$.
c. $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=2$ if and only if $R / H \cong \mathbb{Z}_{3}$ and $R \nsubseteq \mathbb{Z}_{3}$ (i.e., $R / H \cong \mathbb{Z}_{3}$ and $|H| \geq 2$).
d. Otherwise, $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=\infty$.
2. a. $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=3$ if and only if $2 \in H$ and $|H| \geq 3$.
b. $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=4$ if and only if $2 \notin H$ and $|H| \geq 2$.
c. Otherwise, $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=\infty$.
3. a. $\operatorname{gr}\left(G T_{H}(R)\right)=3$ if and only if $|H| \geq 3$.
b. $\operatorname{gr}\left(G T_{H}(R)\right)=4$ if and only if $2 \notin H$ and $|H|=2$.
c. Otherwise, $\operatorname{gr}\left(G T_{H}(R)\right)=\infty$.

The following examples illustrate the previous theorem.
Example 4.4 ([9, Example 4.5]). (a) Let $R=\mathbb{Z}$ and H be a prime ideal of R. Then $G T_{H}(R \backslash H)$ is complete if and only if $H=2 \mathbb{Z}$, and $G T_{H}(R \backslash H)$ is connected if and only if either $H=2 \mathbb{Z}$ or $H=3 \mathbb{Z}$. Moreover, $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=1$ if and only if $H=2 \mathbb{Z}$, and $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=2$ if and only if $H=3 \mathbb{Z}$. Let $p \geq 5$ be a prime integer and $H=p \mathbb{Z}$. Then $G T_{H}(R \backslash H)$ is the union of $(p-1) / 2$ disjoint $K^{\omega, \omega}$'s; so diam $\left(G T_{H}(R \backslash H)\right)=\infty$. Finally, $\operatorname{diam}\left(G T_{H}(R \backslash\right.$ $H))=\infty$ when $H=\{0\}$.
Also, $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=\infty$ if $H=\{0\}, \operatorname{gr}\left(G T_{H}(R \backslash H)\right)=3$ if $H=2 \mathbb{Z}$, and $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=4$ otherwise. Moreover, $\operatorname{gr}\left(G T_{\{0\}}(R)\right)=\infty$ and $\operatorname{gr}\left(G T_{H}(R)\right)=3$ for any nonzero prime ideal H of R.
(b) Let $R=\mathbb{Z}_{p m} \times R_{1} \times \cdots \times R_{n}$, where $m \geq 2$ is an integer, p is a positive prime integer, and R_{1}, \ldots, R_{n} are commutative rings. Then $H=p \mathbb{Z}_{p m} \times R_{1} \times \cdots \times R_{n}$
is a prime ideal of R. The graph $G T_{H}(R \backslash H)$ is complete if and only if $p=2$, and $G T_{H}(R \backslash H)$ is connected if and only if $p=2$ or $p=3$. Moreover, $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=1$ if and only if $p=2$, and $\operatorname{diam}\left(G T_{H}(R \backslash H)\right)=2$ if and only if $p=3$. Assume that $p \geq 5$. Then $G T_{H}(R \backslash H)$ is the union of $(p-$ 1) $/ 2$ disjoint $K^{\alpha, \alpha}$'s, where $\alpha=m\left|R_{1}\right| \cdots\left|R_{n}\right|$; $\operatorname{so} \operatorname{diam}\left(G T_{H}(R \backslash H)\right)=\infty$.

Also, $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=3$ if $p=2$ and $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=4$ otherwise. Moreover, $\operatorname{gr}\left(G T_{H}(R)\right)=3$ for any prime p.

Theorem 4.5 ([9, Theorem 4.7]). Let H be a prime ideal of a commutative ring R. Then the following statements are equivalent.

1. $G T_{H}(R \backslash H)$ is connected.
2. Either $x+y \in H$ or $x-y \in H$ for every $x, y \in R \backslash H$.
3. Either $x+y \in H$ or $x+2 y \in H$ for every $x, y \in R \backslash H$. In particular, either $2 x \in H$ or $3 x \in H$ (but not both) for every $x \in R \backslash H$.
4. Either $R / H \cong \mathbb{Z}_{2}$ or $R / H \cong \mathbb{Z}_{3}$.

Theorem 4.6 ([9, Theorem 5.1(3)]). Let R be a commutative ring and H a multiplicative-prime subset of R that is not an ideal of R. If $G T_{H}(R \backslash H)$ is connected, then $G T_{H}(R)$ is connected.

Theorem 4.7 ([9, Theorem 5.2, Theorem 5.3]). Let R be a commutative ring and H a multiplicative-prime subset of R that is not an ideal of R. Then $G T_{H}(R)$ is connected if and only if $1=z_{1}+\cdots+z_{n}$, for some $z_{1}, \ldots, z_{n} \in H$. In particular, if H is not an ideal of R and either $\operatorname{dim}(R)=0$ (e.g., R is finite) or R is an integral domain with $\operatorname{diam}(R)=1$, then $G T_{H}(R)$ is connected. Furthermore, suppose that $G_{H}(R)$ is connected. Let $n \geq 2$ be the least integer such that $1=z_{1}+\cdots+z_{n}$ for some $z_{1}, \ldots, z_{n} \in H$. Then $\operatorname{diam}\left(G T_{H}(R)\right)=n$. In particular, if H is not an ideal of R and either $\operatorname{dim}(R)=0$ (e.g., R is finite) or R is an integral domain with $\operatorname{dim}(R)=1$, then $\operatorname{diam}\left(G T_{H}(R)\right)=2$.

Theorem 4.8 ([9, Corollary 5.5]). Let R be a commutative ring and H a multiplicative-prime subset of R that is not an ideal of R such that $G T_{H}(R)$ is connected.

1. $\operatorname{diam}\left(G T_{H}(R)\right)=d(0,1)$.
2. If $\operatorname{diam}\left(G T_{H}(R)\right)=n$, then $\operatorname{diam}\left(G T_{H}(R \backslash H)\right) \geq n-2$.

Theorem 4.9 ([9, Theorem 5.15)]). Let R be a commutative ring and H a multiplicative-prime subset of R that is not an ideal of R.

1. Either $\operatorname{gr}\left(G T_{H}(H)\right)=3$ or $\operatorname{gr}\left(G T_{H}(H)\right)=\infty$. Moreover, if $\operatorname{gr}\left(G T_{H}(H)\right)=$ ∞, then $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and $H=Z(R)$; so $G T_{H}(H)$ is a $K^{1,2}$ star graph with center 0 .
2. $\operatorname{gr}\left(G T_{H}(R)\right)=3$ if and only if $\operatorname{gr}\left(G T_{H}(H)\right)=3$.
3. $\operatorname{gr}\left(G T_{H}(R)\right)=4$ if and only if $\operatorname{gr}\left(G T_{H}(H)\right)=\infty$ (if and only if $R \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$).
4. If $\operatorname{char}(R)=2$, then $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=3$ or ∞. In particular, $\operatorname{gr}\left(G T_{H}(R \backslash\right.$ $H))=3$ if $\operatorname{char}(R)=2$ and $G T_{H}(R \backslash H)$ contains a cycle.
5. $\operatorname{gr}\left(G T_{H}(R \backslash H)\right)=3,4$, or ∞. In particular, $\operatorname{gr}\left(G T_{H}(R \backslash H)\right) \leq 4$ if $G T_{H}(R \backslash$ $H)$ contains a cycle.

Let R be a commutative ring. Recall that a subset S of R is called a multiplicatively closed subset of R if S is closed under multiplication. A multiplicatively closed subset S of R is called saturated if $x y \in S$ implies that $x \in S$ and $y \in S$.

Let S be multiplicatively closed subset of a commutative ring R. The graph $\Gamma_{S}(R)$ is a simple undirected graph with all elements of R as vertices, and two distinct vertices x and y of R are adjacent if and only if $x+y \in S$.

Theorem 4.10 ([18, Corollary 1.6]). Suppose that S is an ideal of R with $|S|=n$ and $|R / S|=m$.

1. If $2 \in S$, then $\Gamma_{S}(R)$ is the union of m disjoint K^{n} 's.
2. If $2 x \notin S$ for each $x \in R$, then $\Gamma_{S}(R)$ is the union of K^{n} with $(m-1) / 2$ disjoint $K^{n, n}$'s.

Theorem 4.11 ([18, Proposition 2.1]). The graph $\Gamma_{S}(R)$ is complete if and only if $S=R$ or $(\operatorname{char} R=2$ and $S=R \backslash\{0\})$.
Theorem 4.12 ([18, Proposition 2.1]). Let S be a saturated multiplicatively closed subset of R with $R S=\cup_{i=1}^{n} P_{i}$ such that $\left|R / P_{i}\right|=2$ for some i. Then $\Gamma_{S}(R)$ is a bipartite graph. Furthermore, $\Gamma_{S}(R)$ is a complete bipartite graph if and only if $n=1$.

Theorem 4.13 ([18, Theorem 2.15]). Let R be finite commutative ring and S be a saturated multiplicatively closed subset of R. Then $\operatorname{gr}\left(\Gamma_{S}(R)\right) \in\left\{3,4,6, A_{\varepsilon} \infty\right\}$.

The following is an example of saturated multiplicatively closed sets, to show that each of the numbers $3,4,6$, and ∞ given in the previous theorem can appear as the girth of some graphs.
Example 4.14 ([18, Example 2.16]). Let $R=\mathbb{Z}_{6}$. Then $\operatorname{gr}\left(\Gamma_{Z(R)}(R)\right)=3$, $\operatorname{gr}\left(\Gamma_{U(R)}(R)\right)=6$, and $\operatorname{gr}\left(\Gamma_{S}(R)\right)=4$, where $S=\{1,3,5\}$. For the saturated multiplicatively closed subset $S=\{-1,1\}$ of \mathbb{Z}, we have $\operatorname{gr}\left(\Gamma_{S}(R)\right)=\infty$.
Theorem 4.15 ([18, Theorem 2.17]). Let R be finite and S be a saturated multiplicatively closed subset of R. Then $\operatorname{gr}\left(\Gamma_{S}(R)\right)=A_{\varepsilon} \infty$ if and only if one of the following statements holds:

1. $R=\mathbb{Z}_{3}$.
2. $R=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2}$ and $|S|=1$.

Theorem 4.16 ([18, Theorem 2.23]). Let R be a finite commutative ring. For a saturated multiplicatively closed subset S of R, we have $\operatorname{diam}\left(\Gamma_{S}(R)\right) \in$ $\{1,2,3, A \infty\}$.

References

1. A. Abbasi, S. Habib, The total graph of a commutative ring with respect to proper ideals. J. Korean Math. Soc. 49, 85-98 (2012)
2. S. Akbari, F. Heydari, The regular graph of a non-commutative ring. Bull. Austral. Math. Soc. 89, 132-140 (2013)
3. S. Akbari, M. Jamaali, S.A. Seyed Fakhari, The clique numbers of regular graphs of matrix algebras are finite. Linear Algebra Appl. 43, 1715-1718 (2009)
4. S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring. J. Pure Appl. Algebra 213, 2224-2228 (2009)
5. S. Akbari, M. Aryapoor, M. Jamaali, Chromatic number and clique number of subgraphs of regular graph of matrix algebras. Linear Algebra Appl. 436, 2419-2424 (2012)
6. D.F. Anderson, A. Badawi, On the zero-divisor graph of a ring. Comm. Algebra 36, 3073-3092 (2008)
7. D.F. Anderson, A. Badawi, The total graph of a commutative ring. J. Algebra 320, 2706-2719 (2008)
8. D.F. Anderson, A. Badawi, The total graph of a commutative ring without the zero element. J. Algebra Appl. 11, (18 pages) (2012). doi:10.1142/S0219498812500740
9. D.F. Anderson, A. Badawi, The generalized total graph of a commutative ring. J. Algebra Appl. 12, (18 pages) (2013). doi:10.1142/S021949881250212X
10. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217, 434-447 (1999)
11. D.F. Anderson, S.B. Mulay, On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210, 543-550 (2007)
12. D.D. Anderson, M. Winders, Idealization of a module. J. Comm. Algebra, 13-56 (2009)
13. D.F. Anderson, M. Axtell, J. Stickles, Zero-divisor graphs in commutative rings, in Commutative Algebra Noetherian and Non-Noetherian Perspectives, ed. by M. Fontana, S.E. Kabbaj, B. Olberding, I. Swanson (Springer, New York, 2010), pp. 23-45
14. D.F. Anderson, J. Fasteen, J.D. LaGrange, The subgroup graph of a group. Arab. J. Math. 1, 17-27 (2012)
15. N. Ashra, H.R. Maimani, M.R. Pournaki, S. Yassemi, Unit graphs associated with rings. Comm. Algebra 38, 2851-2871 (2010)
16. S.E. Atani, S. Habibi, The total torsion element graph of a module over a commutative ring. An. Stiint. Univ. ‘Ovidius Constanta Ser. Mat. 19, 23-34 (2011)
17. M. Axtel, J. Stickles: Zero-divisor graphs of idealizations. J. Pure Appl. Algebra 204, 23-43 (2006)
18. Z. Barati, K. Khashyarmanesh, F. Mohammadi, K. Nafar, On the associated graphs to a commutative ring. J. Algebra Appl. 11, (17 pages) (2012). doi:10.1142/S021949881105610
19. I. Beck, Coloring of commutative rings. J. Algebra 116, 208-226 (1988)
20. B. Bollaboás, Graph Theory, An Introductory Course (Springer, New York, 1979)
21. T. Chelvam, T. Asir, Domination in total graph on \mathbb{Z}_{n}. Discrete Math. Algorithms Appl. 3, 413-421 (2011)
22. T. Chelvam, T. Asir, Domination in the total graph of a commutative ring. J. Combin. Math. Combin. Comput. (to appear)
23. T. Chelvam, T. Asir, Intersection graph of gamma sets in the total graph. Discuss. Math. Graph Theory 32, 339-354 (2012)
24. T. Chelvam, T. Asir, On the genus of the total graph of a commutative ring. Comm. Algebra 41, 142-153 (2013)
25. T. Chelvam, T. Asir, On the total graph and its complement of a commutative ring. Comm. Algebra 41, 3820-3835 (2013). doi:10.1080/00927872.2012.678956
26. T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph I. J. Algebra Appl. 12, (18 pages), (2013). doi:10.1142/S0219498812501988
27. T. Chelvam, T. Asir, The intersection graph of gamma sets in the total graph II. J. Algebra Appl. 12, (14 pages), (2013). doi:10.1142/S021949881250199X
28. S. Endo, Note on p.p. rings. Nagoya Math. J. 17, 167-170 (1960)
29. J.A. Huckaba, Commutative Rings with Zero Divisors (Dekker. New York/Basel, 1988)
30. I. Kaplansky, Commutative Rings (University of Chicago Press, Chicago, 1974)
31. K. Khashyarmanesh, M.R. Khorsandi, A generalization of the unit and unitary Cayley graphs of a commutative ring. Acta Math. Hungar. 137, 242-253 (2012)
32. H.R. Maimani, M.R. Pouranki, A. Tehranian, S. Yassemi, Graphs attached to rings revisited. Arab. J. Sci. Eng. 36, 997-1011 (2011)
33. H.R. Maimani, C. Wickham, S. Yassemi, Rings whose total graphs have genus at most one. Rocky Mountain J. Math. 42, 1551-1560 (2012)
34. W.W. McGovern, Clean semiprime f-rings with bounded inversion. Comm. Algebra 31, 3295-3304 (2003)
35. Z. Pucanović, Z. Petrović, On the radius and the relation between the total graph of a commutative ring and its extensions. Publ. Inst. Math. (Beograd)(N.S.) 89, 1-9 (2011)
36. P.K. Sharma, S.M. Bhatwadekar, A note on graphical representations of rings. J. Algebra 176, 124-127 (1995)
37. M.H. Shekarriz, M.H. Shiradareh Haghighi, H. Sharif, On the total graph of a finite commutative ring. Comm. Algebra 40, 2798-2807 (2012)

[^0]: A. Badawi (凶)

 Department of Mathematics and Statistics, American University of Sharjah, P.O. Box 26666 Sharjah, United Arab Emirates
 e-mail: abadawi@aus.edu

